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Abstract. The study of group invariant solutions of the generalised non-linear Schrodinger 
equation ( G N L S E )  is continued. It is shown that eight types of subgroups of the symmetry 
group lead, via symmetry reduction, to third-order real ordinary differential equations, 
giving both the phase and the absolute value of the solution. Only two of the reductions 
provide a Painleve-type equation and both of them only for the cubic GNLSE. This 
equation is solved in terms of the fourth Painlevt transcendent. 

1. Introduction 

This paper is the third in a series devoted to the construction of group invariant 
solutions of a generalised non-linear Schrodinger equation (GNLSE),  namely the cubic- 
quintic equation 

i$r+A$= ao$+allcLI2cL+a*lcLl4cL (1.1) 

( a ,  9 a21 f (0,O) a, E R a, = constant i = 0,  1, 2. 

The Lie group of local point symmetries of equation (1.1) was determined in the 
first paper of the series [ l ]  (hereafter referred to as I). For u,u2 # 0 this group is the 
extended Galilei group. For a ,  = 0, or a2 = 0 (not simultaneously) the group is the 
extended Galilei-similitude group, containing dilations, in addition to translations, 
rotations, proper Galilei transformations and constant changes of phase. All sub- 
algebras of the Galilei algebra and the Galilei-similitude algebra were classified into 
conjugacy classes in I. The second paper in the series [2] (hereafter referred to as 11) 
was devoted to symmetry reductions and to a search for exact analytic group invariant 
solutions. More specifically, all reductions to partial differential equations in two 
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variables were presented, as well as all reductions to algebraic equations. Reductions 
to ordinary differential equations (ODE) were also presented, with the restriction that 
these be of first or second order. All algebraic equations and first-order O D E  were 
solved, as were all second-order ODE that have the Painlevt property [3-51 (no moving 
singularities, other than poles, i.e. no critical points, the position or character of which 
depends on the initial conditions). 

The physical motivation for our interest in the GNLSE (1.1) was also presented in 
I and 11. Here we continue and complete the study of ODE resulting from a symmetry 
reduction of ( l . l ) ,  namely we obtain and discuss all third-order ODE that provide 
group invariant solutions. 

The fact that we are interested, in this paper, in group invariant solutions and in 
reductions to ODE, imposes two important restrictions on the subgroups to be con- 
sidered. 

(i) The generic orbits of the subgroups, when acting on the space X x U of indepen- 
dent (x, y,  z, t )  and dependent ($, $*) variables must have orbits of codimension k = 3. 

(ii) The corresponding three invariants of the group action on X X U ,  say 
I , ( x ,  y ,  z, t, $, $*), i = 1 ,2 ,3 ,  must provide an  invertible mapping from the space of 
dependent variables to that of the invariants. 

When these two conditions are satisfied, we can express the solution 4 (and its 
complex conjugate $*) in terms of the invariants and then obtain group invariant 
solutions. The condition on the codimension assures that we reduce to an ODE. In 
view of the type of action that the Galilei-similitude group has on X x U, the reduction 
formula will always be 

44x9 Y ,  z, t )  = Y ,  t ) f ( 5 )  5 = 55x9 Y ,  z, t )  (1.2) 

where (Y and .$ are known functions. The actual form of these functions is determined 
by the choice of subgroup. 

Substituting (1.2) into the GNLSE (1.1) we obtain a complex ODE for the function 
f(.$). If the action of the subgroup H, restricted to the space of spacelike variables 
{x, y ,  z } ,  is transitive the ODE is of first order (and has been treated exhaustively in 11). 
Otherwise, the complex ODE is of second order and we separate it into two coupled 
real equations, obtained by putting 

f ( 5 )  = M ( 5 )  exp(ix(5)) M , x E R .  (1.3) 

The equations obtained are linear in the phase and actually only involve the derivatives 
2 and X.  They are hence first-order equations for 4 =i. We solve for i from one 
equation and  substitute into the other one. 

In many cases (treated in 11, and in [ 6 , 7 ] )  4 ( 5 )  is obtained directly in terms of 
the amplitude M ( 5 )  and the substitution leads to a second-order O D E  for M(.$ ) .  

In  the remaining cases, treated below, the expression for 4(5 )  has the form 

4(5 )  = i ( 5 )  = P ( 5 )  + r(5) Y ( 5 )  Y ( 5 )  = [ M 2 ( 5 ) P ( 5 )  a (1.4) 

where P ( [ ) ,  r(5) and p ( 5 )  are known. Substituting (1.4) back into the remaining 
equation, we obtain a third-order non-linear ODE for the auxiliary quantity Y ( 5 ) .  
Solving for Y ( 5 )  we obtain both the phase x and the amplitude M off([) and hence 
a solution of the GNLSE (1.1). 

As in the case of second-order ODE, we perform a Painlevt analysis of the obtained 
third-order ODE. This has some novel features, discussed below. Whenever the ODE 
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passes the PainlevC test, we are able to integrate it, even though no complete 
classification of third-order Painlevi type equations exists (for some partial results, 
we refer to Bureau [8,9]). 

In § 2 we present the reduced ODE. Their singularity structure is discussed in 0 3 .  
Those equations that pass the test are integrated in § 4. The final section is devoted 
to conclusions. 

2. The reduced equations 

Since the reduction process, described in § 1, is completely standard, we skip all details 
and only present the results. Eight types of subgroups lead to third-order ODE (see I 
and 11). All of them involve dilations and we are hence limited to purely cubic ( a ,  # 0, 
a2 = 0), or purely quintic ( a ,  = 0, a2 # 0) GNLSE of the form ( 1 . 1 ) .  

Let us run through the individual subgroups, identifying them by their Lie algebras. 
For notation we refer to I and 11-and just recall that in the Galilei-similitude algebra 
the dilation generator is denoted d, rotations, space translations and proper Galilei 
transformations are denoted j , ,  pi  and k, ( i  = 1 , 2 , 3 ) ,  respectively, whereas m denotes 
the operator generating a constant change of phase of the wavefunction and t corre- 
sponds to time translations. 

The dilations act differently (see I) for the cases of the cubic and quintic GNLSE. 

In order to treat the two cases simultaneously, whenever possible, we introduce a 
parameter 6 

for a,  # 0, a, = 0 
for a ,  = 0, a2 # 0. 

Throughout a and b denote real constants. 

Subgroup 1 .  For { d  + am, p 2 ,  p 3 }  we have: 

where f satisfies 

X (=- J? (2 .2a )  

(2 .2b )  

Note that in I1 we used the variable 6 = t / x 2 ,  instead of 5 as in (2 .2~2) .  The obtained 
ODE and the PainlevC analysis are somewhat simpler for the present (equivalent) choice. 

Substituting ( 1 . 3 )  into (2 .2b )  we obtain 

a ,  M 3  S = l  
= { a 2 M 5  

Mji+2MX -$(M -+6M = O .  

The solution of (2 .2d )  is, for the cubic case, 

(2 .2c )  

( 2 . 2 d )  

Y = M'(5)  d5. (2 .2e)  I Y ( 5 )  
1 1 x =-[+- 
4 4M2 
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Substituting X;  into ( 2 . 2 ~ )  we obtain the ODE for Y, namely, in the cubic case 

In the quintic case ( a ,  =0,  a 2 f O )  the equation obtained is of second order, treated 
previously in 11. 

If we can solve the ODE ( 2 . 2 f ) ,  then we obtain the amplitude M and phase ,y off  
as 

Y 
,yo = constant. (2 .2g)  M = 

For the seven remaining subgroups we merely present a compendium of the most 
relevent formulae. 

Subgroup 2. { d  + am,  p 2 ,  k3}: 

X 
a )]  5 = -  ( 2 . 3 ~ )  Ji +(r ,  t )= f ( [ ) tP ’*exp  

(:Y’+~o, Y’j, = O  
2 YY - Y2 + $( 5’ + s a )  Y’ - 

Y’ + 4a2 Y4 

M = ? I / ’  

4 

( 2 . 3 6 )  

( 2 . 3 ~ )  

( 2 . 3 d )  

Subgroup 3. { d  + am,  k 2 ,  k3}:  

X 
+(r ,  t )  =f(5)t-S/2 exp [ ‘ ( Y * ~ : ~ ’  I -- aot -a In  2 t ) ]  5 = -  Ji ( 2 . 4 ~ )  

(2 .4b)  

( 2 . 4 ~ )  

( 2 . 4 d )  

Subgroup 4. { d  + am,  p 3 ,  j ,  + bm}: 

( 2 . 5 ~ )  
exp[-i(u,t+;ln a t - b e  

+ ( r ,  t )  =f(5)r-”4 

( 2 . 5 b )  

( 2 . 5 ~ )  

The results (2 .5)  refer to the quintic GNLSE.  For the cubic one ( a ,  # 0, a2 = 0) this 
reduction provides a second-order O D E  (11). 
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Subgroup 5. { d + am,  k , ,  j ,  + bm}: 

Il/(r,t)=f(t)t-”’exp t 

Subgroup 6. { d  + a m ,  j , ,  j , ,  j 3 } :  

$(r, t )  =f(t)t-”’exp -i a, t+-ln t [ (  2” )I 
2 y y -  y*+- = O  

4 

( 2 . 6 ~ )  

( 2 . 6 b )  

( 2 . 6 ~ )  

( 2 . 6 d )  

( 2 . 7 ~ )  

( 2 . 7 b )  

( 2 . 7 ~ )  

( 2 . 7 d )  

( 2 . 8 ~ )  

\ 

Subgroup 7. { d + bj, + am, t, p,}: 

+(r, t )  =f ( t )p -8  exp[-i(aot+a In P ) I  
p = (x’s y * ) l / ‘  

. $ = O + a l n p  
e = tan-’(y/x) 

(2 .8b)  
16a2 4 ( a 2 - 1 )  P’++exp(-;i;;t) 4 a  2 b  

4 a 2  4a2-1 ~ 2 + %  exp( -6) 2 b  1’4 

(b2+ 1 1 4  
y 2 +  

(b2+ 1)2 b + 1 

( 2 . 8 ~ )  Y’+- 
( b * +  (b’+ 1)‘ b2+ 1 b2+ 1 

2 y y -  y 2 -  

Subgroup 8. { d  + a m ,  t ,  j ,  + bm}, a # 0:  
1 2 

( x2 + y 2)  ”2 
1,6 = f ( t ) ;  exp[i( be - aot - a In z ) ]  5= 

86 *. 
2 y y -  y 2 + -  YY + 1, [ ( 9  - 4b’) 5’ + 6 - 4a’ - 4 b 2 ]  Y 2  

1 + t 2  ( 1 1 5 )  

( 2 . 8 d )  

( 2 . 9 ~ )  

Y ’ = O  (2 .9b)  

M = 5( 1 + t 2 ) ’ I 4  $‘I/’ dS+X,. ( 2 . 9 ~ )  

For the quintic G N L S E  this reduction gives a second-order ODE, treated previously in 11. 

4a‘ 1 
-~ 

( 1  + & 2 ) 4  Y 2 - 4 a 1  ( l + € 2 ) 1 ’ 2  

1 Y  
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The results of this section can be summed up  quite succinctly. Thus, for the cubic 
GNLSE (1.1) with a ,  f 0, a,=O symmetry reduction by the eight subgroups of this 
section has led to six different third-order ODE. They can all be written in the form 

2 YY - Y 2  + ~ ( 5 )  Y Y +  s( 5) P2 + ~ ( 5 )  y2  + U (  5) Y 3  = 0 (2.10) 

where the functions R, S, T and U are given in table 1 for each reduction. 

Table 1. Coefficients in the reduced cubic G N L S E  (2.10). 

Number Algebra R S T ti 

8 { d - a m ,  / , j ,+bm} 

0 

0 

- 

0 

0 

0 

1 
4 

_ -  -40, 

9 
4 4 

~ _ -  -4a, 
g2+8a 

1 

1 
4 4 
- _ -  g 2 +  8a 

16b2 _~ 4 ( a 2 - 1 )  -~ 
( b 2 +  112 (b2+ 1 ) 4  

( 1  + (1  + 5 7 4  
(9 - 4 b 2 ) t 2  - 6 - 4 a 2  -4b2  40’ _- 

~~ 

Table 2. Coefficients in the reduced quintic G N L S E  (2.11). 

Number Algebra S T U 
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For the quintic G N L S E  (1.1) with a ,  = 0, a, # 0 the different reductions also lead to 
six different ODE, all of the form 

2 Y Y -  Y 2 +  s(6) Y 2 +  ~ ( 6 )  y 2 +  U ( ( )  Y 4 =  0. (2.11) 
The functions S, T and U in this case are presented in table 2. 

3. Singularity analysis of the third-order ordinary differential equations 

In the previous section we obtained the reductions of the cubic and quintic NLSE to 
ODE which are genuinely of order three. The generic form of these equations is 

2 Y Y -  Y 2 +  R( 6) Y Y +  S ( 6 )  Y’+ T (  6) Y 2 +  U (  6) Y n  = 0 (3.1) 
with n = 3 for the cubic and n = 4 for the quintic equations. The functions R, S, T, U 
are not arbitrary; in fact they are given in table 1 or 2 for each of the obtained 
reductions. However, the singularity analysis can be performed in a quite general way 
without assuming any specific form for the parameter functions, at least up  to the very 
last step of the calculations. One remark is in order at the outset. We assume that 
T ( 6 )  # 0 i.e. that T ( & )  is non-zero at any generic point to. If this is not the case, i.e. 
if T = 0, then we may introduce a new variable Z = Y and reduce the ODE to second 
order. All these equations have been extensively studied in the previous paper (11) of 
the series. Therefore we will limit ourselves to genuinely third-order ODE and thus 

The PainlevC analysis is performed on all the possible (singular) balances of the 
terms of the equation. Three such leading behaviours are possible. 

(i) 2 YY exactly balances Y 2  and the other terms are of higher order. This means 
that Y behaves as z2  (where z = 6-  to) and moreover that Y starts as z 3  (and not as 
C + z3 ,  C # 0, as Y 2  would then dominate). The resonances in this case are -3, -1 
and 0 (the latter corresponding to the free coefficient of z 3  in Y ) .  Thus, this leading 
behaviour (which moreover is a regular one) does not put any constraints on the 
parameter functions of equation (3.1). Still, we must stress here that the investigation 
of this leading behaviour is not a mere exercise in style. In fact, whenever the coefficient 
of the highest derivative in the equation may vanish (i.e. Y +  0 in our case) one must 
consider this leading behaviour, as it may introduce multivaluedness into the analytic 
structure of the solutions (as already shown in [lo], see also the next paragraph). 

(ii) 2 YY - Y2 balances TY’. This case is again of the ‘vanishing Y’ type. In fact, 
for this balance we have Y = a + pz2+. . . where the constants a and p are related by 

and thus Y behaves as 2pz. The zero of Y can, in principle, be non-regular. The 
resonances in this case turn out to be -1, 0 and  1 in the expansion of I? They 
correspond respectively to the location to of the zero, to the value of p (which determines 
a )  and to the free coefficient of z2  in I? In the expansion of Y ,  the resonances would 
be 0, 1 and 3. One genuine compatibility condition enters at first order in the Y 
expansion and it is 

T ( 6 )  f 0. 

- 4 p +  T(&))(U2=0 

R ( 6 )  = -3 MT(5))/d(.  (3.2) 
For the most general equation oftype (3.1), this leading behaviour is indeed singular. 

Indeed, logarithms appear in the expansion, though it does not start as a pole but 
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rather as an  ordinary point with vanishing first derivative. However, it so happens 
that condition (3.2) is satisfied for all the reductions of both the cubic and the quintic 
equations. This is no mere coincidence. The leading behaviour analysed here can in 
fact be traced back to the original, non-reduced, NLS equation. The resonance condition 
can then be investigated directly for the partial differential equation [ 111. We will not 
reproduce this lengthy calculation here, but it suffices to say that the compatibility 
condition is indeed satisfied by the non-reduced NLS equation 

(iii) 2 Y Y -  Y’ balances the ‘non-bilinear’ term Y ”  ( n  = 3,4).  
Let us first treat the quintic case ( n  = 4). We readily find that Y must behave as 

z-l and thus Y behaves as In z. This logarithmic behaviour of Y, per se, would not 
have been a problem, were it not for the presence of the TY2 term in the equation 
(recall that T never vanishes for the equations we consider). Through this term, 
logarithms enter into the expansion of Y at all orders. Thus, no reduction of the 
quintic NLS equation to a third-order equation possesses the PainlevC property. 

We now turn to the cubic case. Here Y behaves as z - ~ ,  and thus Y diverges as 
z-’. The resonances here are -1, 1 and 4. Two resonance conditions must be satisfied 
in this case. At the resonance 1, we obtain 

R ( 0  = -4 din( U(5))lat. (3.3) 

This first condition is already a most powerful one. In fact, a look at table 1 suffices 
to convince oneself that only cases {1,2} and (3) satisfy equation (3.3) and thus have 
some hope of having the PainlevC property. (Note that case (7) with b = 0 would also 
satisfy equation (3.3) but then we have T = 0 and thus equation (3.1) reduces to second 
order, as treated in 11.) 

Let us now turn to the remaining resonance 4. The compatibility condition at this 
resonance is a rather lengthy one, involving the parameter functions R, S, T, U and 
their derivatives. However, for the two surviving cases, as R = 0 and U is a constant, 
it assumes a most simple form, namely 

a’s( ()/a.$’+ 2 T (  5) = 0 (3.4) 

which shows that case {1,2} does pass the Painlev6 test while case (3) does not. Thus 
to summarise the results of our singularity analysis for the third-order reductions of 
the NLS equation, we have found the following. 

(i) None of the reductions of the quintic equation passes the PainlevC test. 
(ii) Among the reductions of the cubic equation, only 

(3.5) 

is of PainlevC type. In fact this equation results from two different reductions and is 
the same as would have resulted from a reduction of the (1 + 1)-dimensional cubic 
NLS equation. The latter being integrable by the IST method, its reduction should have 
the PainlevC property, according to the A R S  conjecture [5], and it does indeed. Its 
integration in terms of PainlevC transcendents is given in the next section. 

It is worth mentioning that the singularity analysis of this section is more elaborate 
than the usual ‘PainlevC tests’. In  particular it goes beyond the cases handled by the 
MACSYMA program of [12]. Since the highest derivative Y is not isolated in (3.1) (it 
is multiplied by Y )  it is also necessary to investigate power expansions of Y that start 
out as z a ,  where cy may be zero or a positive integer. The program of [ 121 is restricted 
to values of cy that are negative integers. 
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4. Integration of the Painleve type equation 

Equation (3.5) was shown to pass the PainlevC test in the previous section. We now 
proceed to integrate it in terms of known functions, namely the PainlevC transcendent 
PI". The procedure we use is a reasonably general one, that can be applied to reducing 
the order of a PainlevC type equation. It will fail whenever the equation describes a 
new transcendent, e.g. the six PainlevC transcendents in the case of second-order 
equations of the form j; = F ( y ,  L;, t ) ,  where F is rational in y and L;. 

We first look for a first integral of equation (3.5) in the form 

Y =  M ( 5 ,  Y, Y ) + K N ( [ ,  Y, Y )  (4.1) 

where M and N are rational functions of Y and Y, whereas K is a constant. 
Differentiating with respect to 5, eliminating K from the resulting third-order equation 
(using (4.1)) and comparing with (3.5) we see that no such first integral exists. 

Next, we make a more general ansatz, namely that the first integral of (3.5) has 
the form 

Y 2 + F ( Y ,  I ' , ( ) Y = A ( [ ,  Y, Y ) + K B ( &  Y, Y )  (4.2) 

where K is again a constant and F, A and B are rational in Y and ? Differentiating 
(4.2) and comparing with (3.5) we find F = 0 and obtain A and B as simple polynomials. 
The result is that (3.5) has a first integral of the form 

(4.3) Y .. 2 = -$( Y - Y5)2-2aY2+2al  Y 3 +  CY 

where C is an integration constant. The second-order equation (4.3) belongs to the 
class of equations of the form 

4 3 ,  y ,  N3,  Y ,  x )Y+  C(3,  y ,  x) = 0 (4.4) 

studied by Bureau [9]. 
More specifically, we put 

(4.5) 

The function w ( x )  then satisfies 

16 16 
3 21 k 

w2 - 4( w - Wx)'+ 2w2 + -(2a2 - 3 Ca,) w - 7 ( 4 a 3  - g ~ a a , )  = 0. (4.6) 

Equation (4.6) coincides with equation (22.15) of Bureau [9] if one chooses two 
constants CY and P ( a  and b of [9]) to satisfy 

-2(a  + 1)2+ 3P = 4(2a2-3Ca,)  

( a + 1 ) [ 2 ( a + 1 ) * + 9 P ] =  - ( a /k2 ) (4a2-9Ca l ) .  (4.7) 

Following Bureau [9], we express the solution of (4.6), and hence of (4.3), in terms 
of the PainlevC transcendent 

(4.8) 

where C, and C2 are two integration constants (the third one C is absorbed in CY and 
P ) .  

Y ( X )  = PI"(% P,  Cl, c2, x) 
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The solution of (4.3) is finally given by 

(4.9) 

where y(x) of (4.8) satisfies the Plv equation 

(4.10) 

We thus obtain two types of solutions of the cubic G N L S E  (1.1) with a, = 0. The 
first is given by ( 2 . 2 ~ )  with 6 = 1, f(5) = M ( 5 )  exp(ix(()), [ =  x t - ' / * ,  and M ( 5 )  and 
~ ( 5 )  given in terms of Y ( 5 )  in (2.2g). The second type of solution is given by (2.3a), 
with 6 = 1, f(5) = M ( 5 )  exp(ix(()) ,  ( = ~ f - ' / ~ ,  and M ( 5 )  and ~ ( 5 )  given in terms of 
Y ( 5 )  in (2.3d). 

The results for the reduction (2.2) using the subalgebra {d + am, p , ,  p 3 }  agree with 
those of Boiti and  Pempinelli [13], but are somewhat more general, since [13] deals 
only with the case a = 0. 

5. Conclusions 

This paper, taken together with I and 11, as well as [ 6 , 7 ]  completes the task of finding 
all group invariant solutions of the GNLSE (1.1) that are of PainlevC type. We have 
seen that PainlevC type ODE of third order are quite rare among the equations obtained 
from (1.1) by symmetry reduction. Indeed, they never occur for az#O and only in 
two cases out of seven for a2=0 ,  a ,  ZO. 

To obtain further solutions we must either give up  the group invariance condition, 
or find methods for solving the obtained ODE that do  not have the PainlevC property. 
Work on partially invariant solutions (as defined by Ovsiannikov [ 141) is in progress. 
We d o  not know, at this stage, how to solve the non-PainlevC type ODE of this paper 
and of I1 analytically. However, their qualitative behaviour can be investigated, using 
known methods, and numerical solutions could easily be calculated. 
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